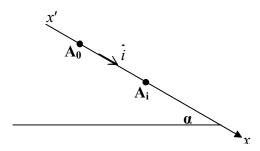
مسابقة في الفيزياء الاسم: المدة: ثلاث ساعات الرقم:

Cette épreuve, formée de quatre exercices obligatoires, est constituée de quatre pages numérotées de 1 à 4.

L'usage des calculatrices non programmables est autorisé.

Premier exercice (6,5 pts) Détermination d'une force de frottement

Pour déterminer la valeur d'une force de frottement existant entre un mobile de masse M=0,50~kg et une table inclinée d'un angle $\alpha=30^\circ$ par rapport à l'horizontale, on lâche le mobile au point A_0 sans vitesse initiale à l'instant $t_0=0$ pris comme origine des temps et on enregistre les différentes positions A_i de la projection de son centre d'inertie sur la table à des intervalles de temps réguliers $\tau=60~ms$, les points A_i étant portés par l'axe du mouvement x'x de vecteur unitaire \vec{i} . Prendre $g=9,8~m/s^2$.



L'enregistrement obtenu permet de dresser le tableau ci-dessous.

Instant	$t_0 = 0$	$t_1 = \tau$	$t_2 = 2 \tau$	$t_3 = 3 \tau$	$t_4 = 4 \tau$	$t_5 = 5 \tau$	$t_{6} = 6 \tau$
Position	A_0	\mathbf{A}_1	A_2	A_3	A_4	\mathbf{A}_5	A_6
Abscisse x (mm)	0	$A_0A_1 = 7,20$	$A_0A_2 = 28,9$	$A_0A_3 = 64,9$	$A_0A_4 = 115$	$A_0A_5 = 181$	$A_0A_6 = 259$
Vitesse V (m/s)	0	0,24		0,72		1,20	
Quantité de mouvement P(kg.m/s)	0	0,12		0,36		0,60	

- 1) Compléter le tableau ci-dessus en calculant, aux dates t₂ et t₄, les valeurs V₂ et V₄ de la vitesse et les valeurs P₂ et P₄ de la quantité de mouvement du mobile.
- 2) Tracer la courbe représentant les variations de P en fonction du temps, à l'échelle de 1cm en abscisse pour 0,06 s et 1 cm en ordonnée pour 0,05 kg.m/s.
- 3) Montrer que la relation liant la quantité de mouvement $\vec{P} = P\vec{i}$ au temps t est de la forme $\vec{P} = \mathbf{b} \ t\vec{i}$ où \mathbf{b} est une constante.
- 4) Calculer **b** en unités SI.
- 5) a. Démontrer que la table inclinée exerce sur le mobile une force de frottement \vec{f} supposée constante et parallèle à l'axe x'x.
 - **b.** Calculer la valeur f de \overrightarrow{f} .

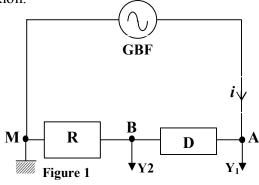
Deuxième exercice (7,5 pts) Identification de dipôles

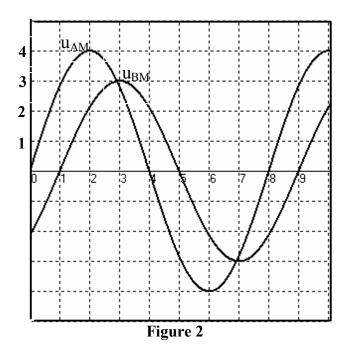
On désire identifier deux dipôles D_1 et D_2 , dont l'un est un condensateur de capacité C et l'autre une bobine d'inductance L et de résistance r. Dans ce but, on dispose d'un GBF délivrant une tension alternative sinusoïdale de valeur efficace maintenue constante durant toute la manipulation, d'un oscilloscope, d'un conducteur ohmique de résistance $R=10\Omega$ et de fils de connexion.

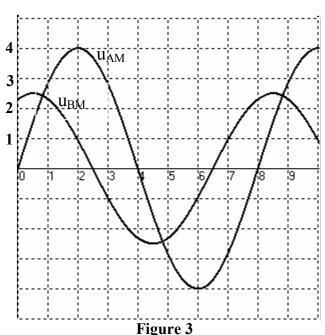
On réalise le montage schématisé par la figure (1), le dipôle D pouvant être D_1 ou D_2 . Les figures (2) et (3) montrent les oscillogrammes de chacune des tensions u_{AM} et u_{BM} .

On donne:

Sensibilité horizontale : 1 ms / division Sensibilité verticale de (Y₁) : 2 V / division Sensibilité verticale de (Y₂) : 1 V / division







A- Natures de D₁ et de D₂

L'oscillogramme de la figure (2) correspond au dipôle D₁. D₁ est alors la bobine. Pourquoi ?

B- Caractéristiques (L, r) de la bobine

- 1. a) Déterminer la période de la tension délivrée par le GBF et en déduire sa pulsation ω.
 - b) Déterminer les valeurs maximales des tensions u_{AM} et u_{BM}.
 - c) Calculer le déphasage φ entre la tension u_{AM} et l'intensité i du courant qui traverse le circuit.
- **2.** Sachant que l'intensité i du courant a pour expression : $i = I_{1m} \cos \omega t$, déterminer :
- a) les expressions de u_{BM} , u_{AB} et u_{AM} en fonction du temps t.
- **b)** la valeur de I_{1m}.
- **3.** En appliquant la loi d'additivité des tensions et en donnant à ωt deux valeurs particulières, déterminer les valeurs de r et de L.

C- Capacité C du condensateur

Le dipôle D₂ étant branché entre A et B, l'expression de la tension u_{AB} est, dans ce cas : $u_{AB} = \frac{I_{2m}}{C\omega} \sin \omega t$.

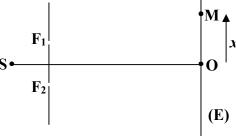
- 1. Vérifier que l'expression de l'intensité du courant est : $i = I_{2m} \cos \omega t$.
- 2. Montrer que l'expression de u_{AM} est : $u_{AM} = 8 \cos (\omega t \frac{3\pi}{8})$
- 3. Déterminer la valeur de C.

Troisième exercice (6,5 pts) Interférences lumineuses

On dispose d'une source S de lumière monochromatique de longueur d'onde λ et d'une lame de verre à faces parallèles d'épaisseur e et d'indice n =1,5.

Le but de cet exercice est de déterminer λ et e en utilisant le dispositif des fentes de Young.

Le dispositif des fentes de Young est constitué de deux fentes F_1 et F_2 très fines, parallèles et distantes de a=0,15 mm, et d'un écran d'observation (E) disposé parallèlement au plan des fentes à une distance D=1,5 m de ce plan .



- 1) En éclairant F_1 avec S et F_2 avec une autre source S', synchrone à S, on n'observe pas un système de franges d'interférences. Pourquoi ?
- 2) En éclairant F₁ et F₂ avec S, placée à égale distance de F₁ et F₂, on observe sur (E) un système de franges d'interférences.
- a. Décrire ce système.
- b. Au point O de l'écran, équidistant de F₁ et F₂, on observe une frange brillante. Pourquoi ?
- c. On montre qu'en un point M de (E), tel que x = OM, la différence de marche optique dans l'air ou dans le vide est donnée par $\delta = F_2M F_1M = \frac{ax}{D}$. Déterminer l'expression de x_K correspondante à la $k^{i \hat{e} m e}$ frange brillante et en déduire l'expression de l'interfrange i.
- 3) On compte 11 franges brillantes qui s'étalent sur une distance d=5,6 cm. Déterminer la valeur de la longueur d'onde λ .

B- Valeur de e

On place maintenant, juste derrière la fente F_1 , la lame de verre. La différence de marche optique au point M devient : $\delta' = \frac{ax}{D}$ - e(n-1).

- 1. Montrer que l'interfrange i reste le même.
- 2. a) La frange centrale ne se forme plus en O. Pourquoi?
 - b) La frange centrale se forme alors en O', position occupée par la cinquième frange sombre en l'absence de la lame. Déterminer l'épaisseur e de la lame.

3

Quatrième exercice (7 pts)

Étude du radionucléide 198 Au

On donne:

```
\begin{array}{ll} \text{masse molaire de} \ ^{198}_{79} \, \text{Au} : 198 \, g \ ; \\ \text{masse de l'électron} : 5,50 \times 10^{-4} \, u \ ; \\ 1 \, u = 931,5 \, \text{MeV} \, / \, c^2 = 1,66 \times 10^{-27} \, \text{kg} \ ; \\ \text{masses du noyau Au} : 197,925 \, u \ ; \\ \text{masse du proton} \ m_p = 1,00728 \, u \ ; \\ \end{array} \qquad \begin{array}{ll} \text{nombre d'Avogadro} : 6,022 \times 10^{23} \, \text{mol}^{-1} \ ; \\ \text{célérité de la lumière dans le vide } c = 3 \times 10^8 \, \text{m/s} \ ; \\ 1 \, \text{eV} = 1,6 \times 10^{-19} \, \text{J}; \\ \text{masse du noyau Hg} : 197,923 \, u; \\ \text{masse du neutron} \ m_n = 1,00866 \, u. \end{array}
```

A- Comparaison de la masse volumique du noyau d'or et de celle de l'atome d'or

- 1) a. Calculer la masse d'un atome d'or 198 Au.
 - **b.** Comparer la masse de l'atome d'or 198 / Au à celle de son noyau.
- 2) Le rayon moyen d'un atome d'or est $r = 16 \times 10^{-11}$ m. Le rayon moyen d'un nucléon est $r_0 = 12 \times 10^{-16}$ m. Comparer la masse volumique de l'atome d'or à celle de son noyau. Conclure à propos de la répartition de la matière dans l'atome.

B- Stabilité du noyau d'or

- **1. a)** Donner la composition du noyau ¹⁹⁸/₇₉ Au.
 - **b)** Si on brise un noyau d'or ¹⁹⁸/₇₉ Au en ses nucléons, montrer que la somme des masses des nucléons, pris séparément au repos, est supérieure à celle du noyau, pris au repos. À quoi est due cette augmentation de masse ?
- **2.** Sachant qu'un noyau est considéré comme stable quand son énergie de liaison par nucléon est supérieure ou égale à 8 MeV, conclure à propos de la stabilité du noyau ¹⁹⁸₇₉ Au.

C- Étude de la désintégration du noyau d'or 198 Au

En se désintégrant, un noyau d'or $^{198}_{79}$ Au, au repos, produit un noyau fils (noyau de mercure $^{A}_{Z}Hg$) de vitesse supposée négligeable. On a pu détecter l'émission d'un photon γ d'énergie 0,412 MeV et d'une particule β^{-} d'énergie cinétique 0,824 MeV.

- 1. En précisant les lois utilisées, écrire l'équation de la réaction de désintégration du noyau d'or et déterminer A et Z.
- **2. a)** Préciser la nature physique du rayonnement γ .
 - **b)** À quoi est due l'émission γ ?
- 3. a) Montrer, par application de la loi de conservation de l'énergie totale, l'existence d'une nouvelle particule émise accompagnant l'émission β^{-} .
 - **b)** Nommer cette particule.
 - c) Déduire son énergie en MeV.
- 4. Calculer la vitesse V de la particule relativiste $\beta^{\text{-}}$ sachant que son énergie cinétique est donnée par :

E_c(relativiste) = mc²(
$$\gamma$$
-1) avec $\frac{1}{\gamma} = \sqrt{1 - \frac{V^2}{c^2}}$

Premier exercice (6,5 pts.)

1) $V_2 = \frac{A_1 A_3}{2\tau}$ (1/4pt.)

$$V_2 = \frac{57.7}{0.12} = 481 mm/s$$
 (1/4 pt.)

$$V_4 = \frac{A_3 A_5}{2\tau}$$
 (1/4 pt.)

$$V_4 = \frac{116.1}{0.12} = 967 mm / s$$
 (1/4 pt.)

$$P_2 = MV_2$$
 (1/4 pt.)

$$P_2 = 0.24 \text{ kg.m/s.}$$
 (1/4 pt.)

$$P_4 = MV_4$$
; $P_4 = 0.48 \text{ kg.m/s.}$ (1/4 pt.)

- 2) Tracé de la courbe (1pt.)
- **3)** La courbe est une droite passant par l'origine ;

$$P = b t$$
 (1/4pt.)

or
$$\overrightarrow{P} = \overrightarrow{mV}$$
 et $\overrightarrow{V} = \overrightarrow{Vi}$; $\overrightarrow{P} = \overrightarrow{Pi}$; d'où $\overrightarrow{P} = \overrightarrow{Pi}$

bt
$$i$$
. (1/4pt.)

4)
$$b = \frac{P_5 - P_1}{4\tau} = 2kg.m/s^2$$
. (1/2 pt)

5) a.
$$\frac{\overrightarrow{dP}}{dt} = b \overrightarrow{i} = 2 \overrightarrow{i}$$
 (1/4pt)

La deuxième loi de Newton, appliquée au

mobile, s'écrit :
$$\frac{\overrightarrow{dP}}{dt} = \sum \overrightarrow{F}$$
 . (1/4 pt.)

Si le frottement n'existe pas, on a :

 $\sum \vec{F} = m\vec{g} + \vec{N}$; \vec{N} étant l'action normale de la table sur le mobile.

$$\sum \vec{F} = \text{mgsin } \alpha \vec{i} - \text{mgcos } \alpha \vec{j} + \vec{N} \vec{j}$$

Le mouvement s'effectue sur \overrightarrow{x} , on a

alors: - mgcos $\alpha \vec{j} + N \vec{j} = \vec{0}$; d'où:

$$\Sigma \vec{F} = \operatorname{mgsin} \alpha \ \vec{i} = 0.5 \times 9.8 \times 0.5 \vec{i} = 2.45 \vec{i}$$
.

Dans ce cas : $\frac{\overrightarrow{dP}}{dt}$ n'est pas égale $\hat{\mathbf{a}} \sum \overrightarrow{F}$.

La force de frottement \vec{f} existe. (11/4pt.)

b.
$$\sum \vec{F} = (\text{mgsin } \alpha - f) \ \dot{i} = \frac{\vec{dP}}{dt} = 2 \dot{i}$$
.

D'où :
$$mgsin \alpha - f = 2$$

et $f = 2,45 - 2 = 0,45$ N. (1 pt.)

Deuxième exercice (7,5 pts.)

A- La figure (2) correpond au cas de la bobine car u_{AM} est en avance de phase sur u_{BM} qui représente l'image du courant (1/2 pt)

B)

1. a. $T=8 \text{div} \times 1 \text{ms/div} = 8 \text{ms} = 8 \times 10^{-3} \text{s}$. (1/4pt)

$$\omega = 2\pi/T$$
; $\omega = 785 \text{ rad/s}$ (1/4 pt)

b.
$$(U_{AM})_{max} = 4 \text{ div} \times 2 \text{ V/div} = 8 \text{ V(1/4pt)}$$

$$(U_{BM})_{max} = 3 \text{ div } \times 1 \text{ V/div} = 3 \text{ V } (1/4\text{pt})$$

c.
$$\varphi = \frac{2\pi \times 1 div}{8 div} = \frac{\pi}{4} rad$$
 (1/4pt)

2. a.
$$u_{BM}$$
=Ri=RI_{1m} cos ω t (1/4pt)

 $u_{AB}=ri+Ldi/dt=rI_{1m}\cos\omega t -L\omega I_{1m}\sin\omega t$ (1/2pt)

$$u_{AM} = 8\cos(\omega t + \frac{\pi}{4})$$
 (1/4pt)

b.
$$RI_{1m}=3V => I_{1m}=0.3A$$
 (1/4pt)

3.
$$8\cos(\omega t + \frac{\pi}{4}) = (r+R) I_{1m} \cos \omega t - L \omega I_{1m} \sin \omega t$$

Pour
$$\omega$$
 t = 0 on a: $8\cos\frac{\pi}{4} = (r+R) I_{1m} = >$

$$r = 8.85 \Omega \cdot (3/4pt)$$

Pour
$$\omega t = \frac{\pi}{2}$$
 on a :-8sin $\frac{\pi}{4}$ = -L ωI_{lm} \Longrightarrow

$$L = 24 \text{ mH}.$$
 (3/4pt)

C-1)
$$i = dq/dt = Cdu_{AB}/dt = I_{2m} \cos \omega t$$

(1/2 pt)

2) $(U_{AM})_{max}$ = 8V ; u_{AM} est en retard de β sur i .

$$\beta = \frac{1.5 \times 2\pi}{8} = \frac{3\pi}{8} \text{ rad.} \Rightarrow$$

$$u_{AM} = 8 \cos(\omega t - \frac{3\pi}{8})$$
 (11/4 pt)

3)
$$8 \cos(\omega t - \frac{3\pi}{8}) = \frac{I_{2m}}{C\omega} \sin \omega t + RI_{2m} \cos \omega t$$

Pour
$$\omega$$
 t = $\frac{\pi}{2}$ on a : $8\sin\frac{3\pi}{8} = \frac{I_{2m}}{C\omega}$

Avec R
$$I_{2m}$$
 = 2,5 V on a : I_{2m} = 0,25 A. ===> C = 43 μ F. (11/4 pt).

Troisième exercice (6,5 pts)

A) 1) car les deux sources ne sont pas cohérentes (½)
2) a. On observe des franges:

- Rectilignes (1/4)
- Parallèles aux fentes (1/4)
- Equidistantes (1/4)
- Alternativement brillantes-obscures (1/4)

b) Les ondes lumineuses arrivent en phase au point O (ou la différence de marche est nulle en O) (1/2 pt)

c) Les abscisses des franges brillantes vérifient la

relation : $\delta = \frac{ax}{D} = K\lambda$ (K entier) => l'abscisse de la

 $K^{i\text{eme}}$ frange brillante est : $x_K = K \frac{\lambda D}{a}$. (1/2 pt.)

L'interfrange i est la distance des centres de deux franges brillantes consécutives d'ordre K et K+1 ==>

$$i = (K+1) \frac{\lambda D}{a} - K \frac{\lambda D}{a} = \frac{\lambda D}{a}$$
 (3/4 pt.)

3) d = 10 i = 10
$$\frac{\lambda D}{a}$$
 (1/2 pt.)

$$=> \lambda = \frac{ad}{10D} \qquad (1/4 \text{ pt.})$$

D'où $\lambda = 0.56 \ \mu m$. (1/2 pt.)

B) 1)
$$\delta' = \delta - e(n-1) = \frac{ax}{D} - e(n-1)$$
 (1/2pt.)

Franges brillantes ==> $\delta' = k'\lambda$ (1/4 pt)

$$=> x_{K'} = k' \frac{\lambda D}{a} + \frac{e(n-1)D}{a}$$

 $i' = x_{(k'+1)} - x_{k'} = \frac{\lambda D}{a}$. L'interfrange reste le même

 $(\frac{1}{4})$

2) a.
$$\delta' = \delta - e(n-1) = \frac{ax}{D} - e(n-1)$$

Pour x = 0, on a : $\delta' = -e(n-1) \neq 0$ (1/4 pt)

La frange brillante centrale n'est plus en O (1/4 pt)

b. $x_0 = 9 i / 2$ (1/2 pt.)

$$\delta' = 0 \Rightarrow x_0 = \frac{e(n-1)D}{a} = > e = 9 \lambda = 5.04 \mu m (1/2 pt)$$

Quatrième exercice (7 pts)

A-1)a)
$$m_{\text{atome}} = \frac{198}{6.022.10^{23}} = 32,879.10^{-23} \text{g}$$
 (1/4pt)

b)
$$m_{\text{noyau}} = 197,925 \times 1,66 \times 10^{-24} \text{g}$$

= 32,855. 10^{-23}g . $m_{\text{atome}} \approx m_{\text{noyau}}$ (1/4pt)

2)
$$\rho_{atome} = \frac{m_{atome}}{V_{atome}} = \frac{m_{atome}}{\frac{4}{3}\pi r^3} = 19,16.10^3 \text{ kg/m}^3 \text{ (1/2pt)}$$

$$\rho_{noyau} = \frac{m_{noyau}}{V_{noyau}} = \frac{m_{noyau}}{A \times \frac{4}{3} \pi r_0^3} = 2,3.10^{17} \text{ kg/m}^3. \quad (1/2\text{pt})$$

$$\rho_{novau} = 10^{13} \, \rho_{atome} \tag{1/4 pt}$$

La matière qui constitue l'atome se trouve concentrée au noyau. (1/4pt)

- **B-1. a)** 79 protons et 119 neutrons (1/4 pt)
 - **b)** $79 \text{ m}_p + 119 \text{ mn} = 199,605 \text{ u}$ (1/4 pt)
 - $m_{\text{noyau}} = 197,925 \text{ u} < 199,605 \text{ u}.$ (1/4 pt)
 - L'énergie se transforme en masse (1/4 pt)
- $2) E_1 = \Delta m \times c^2$ (1/4 pt)
- $\Delta m = Zm_p + (A-Z)m_n m_{noyau} = 1,68066 u$ (1/4pt)
- $E_1 = 1565,535 \text{ MeV}$ (1/4 pt)
- $E_1/A = 7.9 \text{ MeV/nucl\'eon.}$ (1/4 pt)

$$E_1/A < 8 \text{ MeV/nucl\'eon}$$
 (1/4 pt)

Le noyau
$$_{79}^{198}$$
 Au est instable. (1/4 pt)

C-1)
$$^{198}_{79}Au \rightarrow ^{198}_{80}Hg + ^{0}_{-1}e + \gamma$$
 (1/4pt)

Loi de conservation de A et loi de conservation de Z.

$$(1/4 pt)$$

2) a. Le rayonnement γ est une onde électromagnétique.

b) Le noyau fils Hg étant à l'état excité, il se désexcite en émettant γ . (1/4pt)

3) a.
$$E_{\text{totale avant}} = E_{\text{totale après}}$$

$$\sum (E_C + E_{\text{masse}})_{\text{avant}} = \sum (E_C + E_{\text{masse}})_{\text{après}}$$

$$(m_{Au}c^2+0) = (m_{Hg}c^2+0) + (m_{\rho^-}c^2+E_{c_{\rho^-}}) +$$

 $E(\gamma)$

$$[m_{Au}_{-}(m_{Hg} + m_{e^{-}})]c^{2} = E_{c_{e^{-}}} + E(\gamma)$$

La nécessité d'introduire une nouvelle particule. (1/2 pt)

- b) Antineutrino (1/4 pt)
- c) E = 1,351 1,236 = 0,115 MeV (1/4 pt)

4)
$$E_{\text{masse}} = mc^2 = 0.00055 \times 931,5 = 0.512 \text{ MeV}.$$

Ec =
$$(\gamma - 1)$$
 m c² ==> 0,824 = $(\gamma - 1)$ 0,512 ===>

 $\gamma = 2.6$

$$V = 2.7 \times 10^8 \,\text{m/s}$$
 (1 /2 pt)