الاسم:	مسابقة في مادة الفيزياء
الرقم:	ً المدة ساعتان ً

Cette épreuve est formée de trois exercices répartis sur trois pages. L'usage d'une calculatrice non programmable est autorisé.

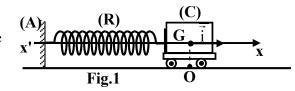
Premier exercice (7 points)

Oscillateur harmonique

Le but de cet exercice est d'étudier le mouvement d'un oscillateur mécanique.

A- Étude théorique

On dispose d'un petit chariot (C) de masse m = 200 g, fixé à l'une des extrémités d'un ressort horizontal (R), à spires non jointives, de masse négligeable et de raideur K = 20 N/m; l'autre extrémité du ressort est accrochée à un support fixe (A) (figure 1).



(C) se déplace sans frottement sur un rail horizontal et son centre d'inertie G peut alors se déplacer suivant un axe horizontal x'Ox.

À l'instant $t_0 = 0$, G se trouve à sa position d'équilibre O. À cet instant, on communique à (C) une vitesse initiale $\vec{V}_0 = -V_0 \vec{i}$ ($V_0 > 0$). (C) oscille alors sans frottement avec une pulsation propre ω_0 .

À un instant t, l'abscisse de G est $x = \overline{OG}$ et la mesure algébrique de sa vitesse est $v = \frac{dx}{dt}$.

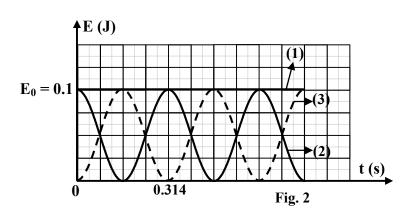
Le plan horizontal passant par G est pris comme niveau de référence de l'énergie potentielle de pesanteur.

- 1) Écrire, à un instant t, l'expression de l'énergie mécanique du système [(C), (R), Terre] en fonction de m, k, x et v.
- 2) Établir l'équation différentielle du second ordre en x qui régit le mouvement de G.
- 3) La solution de cette équation différentielle a pour expression $x = -X_m \sin(\omega_0 t)$ où X_m est une constante positive.
 - a) Déterminer l'expression de ω_0 en fonction de k et m.
 - **b)** Déduire la valeur de sa période propre T₀.
- 4) Déterminer l'expression de l'amplitude X_m en fonction de V_0 , k et m.

B- Étude énergétique

Un système approprié enregistre les courbes donnant les variations, en fonction du temps, de l'énergie cinétique, de l'énergie potentielle élastique et de l'énergie mécanique du système [(C), (R), Terre] (figure 2).

- 1) Indiquer, en le justifiant, le type d'énergie que représente chaque courbe.
- 2) Les énergies représentées par les courbes (2) et (3) sont périodiques de période T.
 - a) Indiquer, à partir de la figure 2, la valeur de T.
 - **b)** Déduire la relation entre T et T_0 .
- 3) Écrire l'expression de E_0 en fonction de m et V_0 .
- 4) Déduire la valeur de V_0 .



Deuxième exercice (7 points)

Détermination de la caractéristique d'un dipôle électrique

Un dipôle électrique (D), de nature inconnue, peut être un conducteur ohmique de résistance R, une bobine pure d'inductance L ou un condensateur de capacité C. Pour déterminer sa nature et sa caractéristique on dispose du matériel suivant :

- un générateur idéal G de force électromotrice constante (f.é.m) E ;
- deux conducteurs ohmiques de résistance $R_1 = 100 \Omega$ et $R_2 = 150 \Omega$;
- Un commutateur K.

On réalise le montage du circuit schématisé par la figure 1.

$\begin{array}{c|c} & \bigoplus_{i \ (1)} K & (2) \\ & \downarrow_{i \ (1)} F \\ & \boxtimes_{i \ (1)} D \\ & \downarrow_{i \ (1)} R_{1} \\ & \downarrow_{i \ (1)} R_{2} \end{array}$ Fig.1 N

A- Première expérience

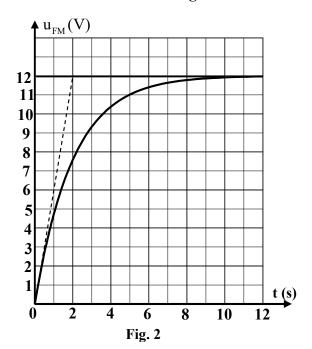
À l'instant $t_0 = 0$, le commutateur K est placé à la position (1). La figure 2 montre les variations de la tension u_{FM} aux bornes de D en fonction du temps et de la tangente à cette courbe à $t_0 = 0$.

- 1) Le dipôle (D) est un condensateur. Justifier.
- 2) Indiquer la valeur de la f.é.m. E du générateur.
- 3) Calculer, à l'instant $t_0 = 0$, l'intensité du courant circulant dans le circuit.
- 4) Établir l'équation différentielle qui décrit la variation de la tension $u_{FM} = u_C$.
- 5) la solution de l'équation différentielle a la forme :

$$u_C = u_{FM} = A + B e^{-\frac{t}{\tau}}.$$

Déterminer les expressions des constantes A, B et τ en fonction de E, R_1 et C.

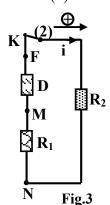
- 6) Déterminer graphiquement la valeur de la constante de temps τ .
- 7) Déduire la valeur de C.



B- Deuxième expérience.

Au cours de la charge du condensateur et à un instant t_1 , on bascule le commutateur K à la position (2) (Figure 3).

- 1) Nommer le phénomène physique qui aura lieu dans le circuit.
- 2) Le conducteur ohmique de résistance R_2 supporte au maximum une puissance $P_{max} = 0.24$ W.
 - a) Calculer la valeur maximale de l'intensité du courant qui peut traverser R_2 sans l'endommager (La puissance thermique est donnée par la relation $p = Ri^2$).
 - b) En appliquant la loi d'additivité des tensions, montrer que la tension maximale aux bornes du condensateur doit être $u_{FM} = 10 \text{ V}$ pour que R_2 ne soit pas endommagé.
 - c) À l'instant t_1 , l'intensité du courant est maximale. Déterminer graphiquement la durée maximale $\Delta t = t_1$ de la charge du condensateur pour que le conducteur ohmique R_2 ne soit pas endommagé.



Troisième exercice (6 points)

La radioactivité du Cobalt 60

L'isotope cobalt $^{60}_{27}$ Co est radioactif, de constante radioactive $\lambda = 4,146 \times 10^{-9} \text{ s}^{-1}$. On considère un échantillon de cet isotope ayant une masse $m_0 = 1$ g à l'instant $t_0 = 0$.

Données:

Symbole	⁶⁰ ₂₇ Co	⁶⁰ ₂₈ Ni	${}_{Z}^{A}X$
Masse (en u)	59,9190	59,9154	0,00055

- $1 u = 931,5 \text{ MeV/c}^2$;
- $\begin{aligned} &\text{nombre d'Avogadro}: N_A = 6,02 \times 10^{23} \text{ mol}^{-1} \text{;} \\ &\text{masse molaire du cobalt}: M = 60 \text{ g.mol}^{-1} \text{;} \end{aligned}$
- 1 an = 365 jours.
 - 1) Calculer, en années, la période radioactive du Cobalt 60.
 - 2) a) Déterminer, à t = 0, le nombre de noyaux N_0 présents dans 1 g de Cobalt 60.
 - b) Définir l'activité A d'un échantillon radioactif.
 - c) Déterminer l'activité de l'échantillon de Cobalt 60 à la date t = 15,9 ans.
 - 3) La désintégration du $^{60}_{27}\mathrm{Co}$ donne naissance à l'isotope nickel $^{60}_{28}\mathrm{Ni}\,\mathrm{suivant}$ la réaction :

$$_{27}^{60}$$
Co $\rightarrow _{28}^{60}$ Ni + $_{Z}^{A}$ X +

- a) Calculer, en précisant les lois utilisées, les valeurs de Z et A.
- b) Nommer les particules émises.
- c) Calculer, en MeV, l'énergie libérée par cette désintégration.
- d) Déterminer l'énergie libérée par la désintégration de 1 g de Cobalt 60.
- 4) Sachant que l'énergie libérée par la fission de 1 g d'Uranium ²³⁵₉₂U est de 5,127×10²³ MeV, calculer la masse d'Uranium $^{235}_{92}\mathrm{U}$ dont la fission produit la même énergie libérée par la désintégration de 1g de Cobalt 60.

	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	مشروع معيار التصحيح

Premi	emier exercice : Oscillateur harmonique	
A.1	Énergie mécanique : $E_m = E_{pe} + E_C \Rightarrow E_m = \frac{1}{2} \mathbf{k} \cdot \mathbf{x}^2 + \frac{1}{2} \mathbf{m} \cdot \mathbf{v}^2$	1/2
A.2	Sans frottement \Rightarrow Conservation de l'énergie mécanique \Rightarrow E_m = constante. Dérivons les deux membres par rapport au temps: $\frac{dE_m}{dt} = kx x + mV V = 0$; $\ddot{x} + \frac{k}{m}x = 0$.	3/4
A.3.a	$\begin{split} x &= \text{-} \ X_m \ \text{sin}(\omega_0 t) \ ; \ \dot{x} = \text{-} \ X_m \ \omega_0 \ \text{cos}(\omega_0 t) \ \text{et} \ \ddot{x} = X_m \ \omega_0^2 \ \text{sin}(\omega_0 t) \\ \text{Remplaçons dans l'équation différentielle} : \\ X_m \ \omega_0^2 \ \text{sin}(\omega_0 t) \ - \ \frac{k}{m} \ X_m \ \text{sin}(\omega_0 t) = 0 \Rightarrow Xm \ \text{sin}(\omega_0 t) \ (\ \omega_0^2 - \frac{k}{m}) = 0 \Leftrightarrow \omega_0 = \sqrt{\frac{k}{m}} \ . \end{split}$	1
A.3.b	$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{K}} = 0, 2\pi = 0,628s$	3/4
A.4	$\begin{split} \dot{x} &= \text{-} \ X_m \ \omega_0 \cos(\omega_0 t) \ ; \ \grave{a} \ t_0 = 0 \ : \ x = 0 \ \text{et} \ v = \text{-} \ X_m \ \omega_0 = \text{-} \ V_0 < 0 \\ \Rightarrow X_m &= \frac{V_0}{\omega_0} = V_0 \sqrt{\frac{m}{k}} \ . \end{split}$ $\underline{\textbf{Ou bien}} : \text{conservation de l'énergie mécanique} : \ \frac{1}{2} K X_m^2 = \frac{1}{2} m V_0^2 \Rightarrow X_m = V_0 \sqrt{\frac{m}{K}} \end{split}$	3/4
B.1	La courbe (1): énergie mécanique, car $E_m = E_0 = constante$; La courbe (2): Energie cinétique car à $t = 0$: $v = -V_0$ et $E_C = \frac{1}{2} m V_0^2 \implies E = E_0 = E_{c max}$ la courbe (3): énergie potentielle élastique car à $t = 0$, $x = 0 \implies Epe = 0$	1 ½
B.2.a	T = 0.314s	1/4
B.2.b	$T_0 = 2T$	1/2
В.3	$E_0 = Ec_0 + Epe_0 = \frac{1}{2}mV_0^2 + 0 = \frac{1}{2}mV_0^2$	1/2
B.4	$V_0^2 = \frac{2E_0}{m} \Longrightarrow V_0 = \sqrt{\frac{2E_0}{m}} = 1 \text{m/s}$	1/2

Deuxième exercice : Détermination de la caractéristique d'un dipôle électrique		7
A.1	D est un condensateur puisque sa tension augmente exponentiellement de zéro à une valeur limite constante.	1/2
A.2	À la fin de la charge, la tension aux bornes de C est E ainsi : E = 12 V	1/2
A.3	À $t = 0$ s, l'intensité du courant est maximale $i = I_0$ alors : $E = u_c + R_1 i$ or $u_C = 0$ $\Rightarrow i = I_0 = \frac{E}{R_1} = \frac{12}{100} = 0,12 \text{ A}.$	1

A.4	$\begin{split} u_{FN} &= u_{FM} + u_{MN} \ : \ E = u_{FM} + R_1. \ i mais i = \frac{dq}{dt} = C \ \frac{du_C}{dt} \qquad alors : \\ E &= u_c + R_1 C \frac{du_c}{dt} \Rightarrow \frac{du_c}{dt} + \frac{1}{R_1 C} u_c = \frac{E}{R_1 C} \end{split}$	1
A.5	$u_{c} = A + B e^{-\frac{t}{\tau}}. \grave{a} t = 0 \Rightarrow 0 = A + B \Rightarrow A = -B$ $\frac{du_{c}}{dt} = -\frac{B}{\tau}e^{-t/\tau} \Rightarrow -\frac{B}{\tau}e^{-t/\tau} + \frac{A}{R_{1}C} + \frac{B}{R_{1}C}e^{-t/\tau} = \frac{E}{R_{1}C}$ Par identification $A = E \text{ et } \tau = R_{1}C$; $B = -A = -E$	1 ½
A.6	En utilisant le graphique, à $t = \tau$, uc = 0.63 E = 7,56V $\Rightarrow \tau = 2$ s Ou bien la tangente à la courbe à $t = 0$ coupe l'asymptote $u = E = 12$ V en un point dont l'abscisse est $\tau = 2$ s	
A. 7	mais $\tau = R_1 C \implies C = \frac{\tau}{R_1} = 0.02F = 20 \text{ mF}.$	1/2
B.1	Décharge du condensateur (décharge électrique)	1/4
B.2.a	Le conducteur ohmique R_2 a une puissance maximale $P_{max} = 0.24 \text{ W} = R_2[I_{max}]^2 \Rightarrow I_{max} = 0.04 \text{ A}$	1/2
B.2.b	$u_{FM} = u_{FN} + u_{NM} \Rightarrow u_{FM} = R_2 i + R_1 i = (R_2 + R_1) i \Rightarrow (u_{FM})_{max} = (R_2 + R_1) I_{max} = 10 \text{ V}$	1/2
B.2.c	D'après le graphe $u_c = 10V$ correspond à $t_1 = 3.5$ s.	1/4

Trois	sième exercice : La radioactivité du Cobalt 60	6
1	$\lambda = 0.693/T \Rightarrow T = \frac{0.693}{4,146 \times 10^{-9} \times 365 \times 24 \times 3600} = 5.3 \text{ années}$	3/4
2.a	$N_0 = m_0/M \times 6,02 \times 10^{23} = 1,00333 \times 10^{22} \text{ noyaux} \approx 1 \times 10^{22} \text{ noyaux}$	3/4
2.b	L'activité radioactive est le nombre de désintégrations par unité de temps.	1/2
2.c	$A = \lambda N \text{ avec } N = N_0/2^n \text{ et } n = t/T = 3 \Rightarrow N = N_0/8 = 1,25 \times 10^{21} \text{ noyaux}$ $A = \lambda N = 5,2 \times 10^{12} \text{ Bq}$	1
3.a	$_{27}^{60}$ Co \longrightarrow $_{28}^{60}$ Ni + $_{Z}^{A}$ X + γ + $_{0}^{0}$ $\overline{\nu}$ La loi de conservation du nombre de charge donne : 27 = 28 + Z, d'où Z = -1. La loi de conservation du nombre de masse donne : 60 = 60 + A, d'où A = 0.	3/4
3.b	Les particules émises sont : électron et antineutrino	1/2
3.c	$\Delta m = (59,9190) - (59,9154 + 0.00055) = 3,05 \times 10^{-3} \text{ u}$ Énergie libérée $E_{\ell} = \Delta mc^2 = 3,05 \times 10^{-3} \times 931,5 = 2,84 \text{ MeV}$	3/4
3.d	Énergie libérée par 1 g de Co: $E' = N_0 E_{\ell} = 2,84 \times 10^{22} \text{ MeV}$	1/2
4	$m_U = \frac{2,84 \times 10^{22}}{5,127 \times 10^{23}} = 0,055g$	1/2