الإسم:	مسابقة في مادة الفيزياء
الرقم:	المدة: سُاعة ونصف

<u>Cette épreuve est formée de trois exercices obligatoires repartis sur trois pages.</u> L'usage d'une calculatrice non programmable est autorisé.

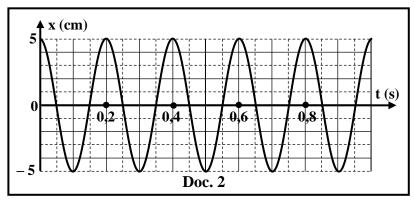
Exercice 1 (7 pts)

Oscillations mécaniques

Un oscillateur mécanique est formé d'un bloc (S), de masse m = 50 g, et un ressort de masse négligeable et de constante de raideur k.

Le ressort, placé horizontalement, est relié par l'une de ses deux extrémités à un support fixe A. (S) est attaché à l'autre extrémité du ressort et peut se déplacer, sans frottement, sur une surface horizontale (Doc. 1).

À l'équilibre, le centre de masse G de (S), coïncide avec l'origine O de l'axe x' x.


On écarte (S) de sa position d'équilibre de x_0 et on le lâche, à l'instant $t_0 = 0$, sans vitesse initiale. (S) effectue alors des oscillations mécaniques. À un instant t, l'abscisse de G est $x = \overline{OG}$ et la valeur algébrique de sa vitesse

est
$$v = x' = \frac{dx}{dt}$$
.

Le but de cet exercice est de déterminer la vitesse maximale atteinte par G.

Prendre:

- Le plan horizontal contenant G comme niveau de référence de l'énergie potentielle de pesanteur ;
- $\pi^2 = 10$.
- $\textbf{1)} \ L'\'{e}nergie \ m\'{e}canique \ E_m \ du \ syst\`{e}me \ (Oscillateur, Terre) \ est \ conserv\'{e}e. \ Pourquoi \ ?$
- 2) Écrire, à l'instant t, l'expression E_m , en fonction de x, m, k et v.
- 3) Établir l'équation différentielle, du second ordre en x, qui régit le mouvement de G.
- 4) Déduire, en fonction de m et k, l'expression de la période propre T_0 des oscillations.
- 5) Un dispositif approprié, montre l'évolution de x en fonction du temps (Doc. 2).
 - **5-1**) En se référant au document 2, indiquer les valeurs de T_0 et x_0 .
 - 5-2) Déduire la valeur de k.
 - 5-3) Montrer que l'énergie mécanique du système (Oscillateur, Terre) est $E_m = 6.25 \times 10^{-2} \, J.$
 - **5-4)** En utilisant le document 2, indiquer un instant pour lequel l'énergie potentielle élastique du ressort est nulle.
 - **5-5**) Déterminer la valeur maximale de la vitesse atteinte par G.

Exercice 2 (6 pts)

Étude du mouvement d'un solide

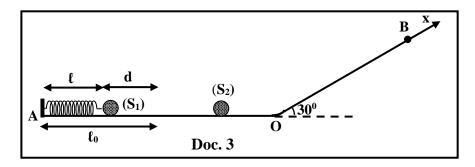
On dispose:

- d'un rail AOB situé dans un plan vertical et constitué de deux parties : AO rectiligne horizontale et OB rectiligne inclinée d'un angle $\alpha = 30^{\circ}$ sur l'horizontale ;
- de deux solides (S_1) et (S_2) , assimilés à des particules, et de même masse m = 80 g;
- d'un ressort (R), de masse négligeable, de constante de raideur k = 200 N/m et de longueur à vide ℓ_0 , attaché par l'une de ses deux extrémités à un support fixe A et l'autre extrémité est libre.

Prendre:

- Le plan horizontal contenant O comme niveau de référence de l'énergie potentielle de pesanteur ;
- $g = 10 \text{ m/s}^2$.

1) Lancement de la particule (S₁)


Pour lancer (S_1) , on le pose contre l'extrémité libre du ressort, on comprime (R) d'une distance d, et puis on lâche le système [ressort, (S_1)] sans vitesse initiale (Doc. 3).

Lorsque (R) reprend sa longueur à vide ℓ_0 , (S1) quitte le ressort avec une vitesse \overrightarrow{V}_1 , parallèle à AO.

Après le lancement, (S_1) se déplaçant à la vitesse \overrightarrow{V}_1 , entre en collision frontale avec (S_2) initialement au repos sur le rail AO.

Juste après la collision, (S_1) s'arrête et (S_2) se déplace avec une vitesse \overrightarrow{V}_2 parallèle à AO et de valeur $V_2 = 5$ m/s.

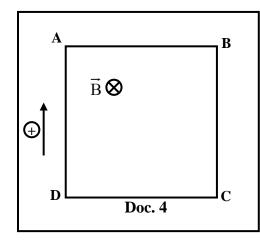
(S₁) et (S₂) se déplacent sans frottement sur la partie AO du rail.

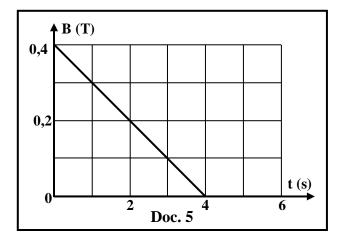
- **1-1**) En appliquant la loi de conservation de la quantité de mouvement durant la collision, montrer que la valeur de \overrightarrow{V}_1 est $V_1 = 5$ m/s.
- **1-2**) Déduire que la collision entre (S_1) et (S_2) est élastique.
- 1-3) Déterminer la valeur de d.

2) Mouvement de (S2) sur la partie inclinée OB

À l'instant $t_0 = 0$, (S_2) aborde en O la partie inclinée OB avec une vitesse $\vec{V}_0 = V_0$ $\hat{i} = 5\hat{i}$ (m/s), avec \hat{i} le vecteur unitaire de l'axe x'x parallèle à la partie OB du rail. Sur cette partie, (S_2) subit l'action d'une force de frottement \vec{f} , parallèle à OB, dans le sens opposé au déplacement et de valeur constante f.

- 2-1) Nommer les forces extérieures qui s'exercent sur (S2) le long du trajet OB.
- 2-2) Montrer que la somme des forces extérieures qui s'exercent sur (S_2) , durant son mouvement ascendant sur OB est: $\Sigma \vec{F} = -(f + \text{mg.sin}\alpha) \hat{i}$.
- **2-3**) L'expression de la quantité de mouvement de (S_2) durant son mouvement ascendant sur OB est : $\vec{P} = (-0.9 \text{ t} + 0.4) \hat{i}$ (SI).


Sachant que $\frac{d\vec{P}}{dt} = \Sigma \vec{F}$, déterminer f.


Exercice 3 (7 pts)

Induction électromagnétique

Le but de cet exercice est de déterminer, par deux méthodes, le sens du courant induit à travers une spire carrée. Dans ce but, on dispose d'une spire carrée ABCD, de côté a=10 cm et de résistance r=2 Ω qui est placée dans un champ magnétique uniforme \overrightarrow{B} dont la valeur B varie avec le temps. La direction de \overrightarrow{B} est perpendiculaire au plan de la spire (Doc. 4).

Le document 5 montre, durant l'intervalle [0 s, 4 s], l'évolution de la valeur B du champ magnétique \overrightarrow{B} avec le temps.

- 1) Un courant induit traverse la spire durant l'intervalle [0 s, 4 s]. Justifier.
- 2) En appliquant la loi de Lenz, préciser le sens du courant induit traversant la spire.
- 3) Montrer que l'expression de B durant l'intervalle [0 s, 4 s] est : B = -0,1 t + 0,4 (S.I.).
- **4**) En respectant le sens positif indiqué sur le document 4, déterminer, en fonction du temps, l'expression du flux magnétique à travers la spire.
- 5) Déduire la valeur de la force électromotrice induite « e ».
- 6) L'intensité du courant induit qui traverse la spire est donnée par $i = \frac{e}{r}$; déduire la valeur et le sens de i.
- 7) Comparer le sens du courant induit obtenu dans la partie 6 à celui obtenu dans la partie 2.

مسابقة في مادة الفيزياء أسس التصحيح

Exercice 1 (7 pts)

Oscillations mécaniques

	Partie	tie Réponses	
	L'énergie mécanique du système est conservée car le frottement est négligeable. (ou: La somme des travaux des forces non conservatives est nulle, alors l'énergie mécanique du système est conservée).		0,25
2 $Em = E_C + E_{Pe} + Epp = \frac{1}{2} m v^2 + \frac{1}{2} kx^2 + 0$		0,5	
	3	Em = constante , alors $\frac{dEm}{dt} = 0$, donc m v v' + k x x' = 0 , mais v = x' et v' = x", alors v (m x" + k x) = 0 v = 0 à rejeter ; par conséquent, $x'' + \frac{k}{m}x = 0$	1
	4	L'équation différentielle est de la forme: $x'' + \omega_0^2 \ x = 0$, avec $\omega_0 = \sqrt{\frac{k}{m}}$ $T_1 = \frac{2\pi}{\omega_0} \qquad ; \ donc, T_0 = 2\pi\sqrt{\frac{m}{k}}$	1,5
	5.1	$T_0 = 0.2 \text{ s}$ et $x_0 = 5 \text{ cm}$	1
	5.2	$0.2 = 2\pi \sqrt{\frac{0.05}{k}}$ donc k = 50 N/m	1
5	5.3	Lorsque la vitesse est nulle, l'élongation est maximale donc : $Em = Ec + Epp = 0 + Epp = \frac{1}{2} kX^2_{max}$ $Em = 0.5 \times 50 \times 0.05^2 = 0.0625 J = 6.25 \times 10^{-2} J$	0,75
	5.4	t = 0.05 s ou bien $t = 0.15 s$ ou bien $t = 0.25 s$	0,25
	5.5	Lorsque G passe par O, sa vitesse est maximale donc : $Em = Ec + Epp = Ec + 0 = \frac{1}{2} mV^2_{max}$ $0,0625 = 0,5 \times 0,05 \times (V)_{max}^2 donc \ V_{max} = 1,58 \ m/s$	0,75

Exercice 2 (6 pts)

Étude du mouvement d'un solide

Partie		Réponse	Note
1	1.1	$ \vec{P}_{juste \ avant \ la \ collision} = \vec{P}_{juste \ après \ la \ collision} ; \\ m. \vec{V}_1 + \vec{0} = \vec{0} + m. \vec{V}_2 , \vec{V}_1 = \vec{V}_2 \\ Donc \ V_1 = 5 \ m/s. $	1,5
	1.2	La collision est élastique si $E_{C \text{ (S1et S2) avant la collision}} = E_{C \text{ (S1et S2) après la collision}} = E_{C \text{ (S1et S2) après la collision}} = E_{C \text{ (S1)}} + E_{C \text{ (S2)}} = \frac{1}{2} \times m \times V_1^2 + 0 = \frac{1}{2} \times 0,08 \times 5^2 + 0 = 1 \text{ J}$ $E_{C \text{ après la collision}} = E_{C \text{ (S1)}} + E_{C \text{ (S2)}} = 0 + \frac{1}{2} \times m \times V_2^2 = 0 + \frac{1}{2} \times 0,08 \times 5^2 = 1 \text{ J}$ Par suite le choc est élastique	1
	1.3	En appliquant la loi de conservation de l' E_m du système [R, S_1 et Terre] Em $_{(R)}$ est comprimé de $_d$ = Em $_{(R)}$ en sa longueur initiale (E_C + Epp + Epe) $_{(R)}$ est comprimé de $_d$ = (E_C + Epp + Epe) $_{(R)}$ en sa position d'équilibre $0 + \frac{1}{2}kd^2 + 0 = \frac{1}{2}mV_1^2 + 0 + 0$ $\frac{1}{2} \times 200 \times d^2 = \frac{1}{2} \times 0.08 \times 5^2$ donc $d = 0.1$ m = 10 cm	1,5
2	2.1	Les forces agissant sur (S_2) le long du trajet OB sont : Force de pesanteur \overrightarrow{mg} Réaction normale \overrightarrow{N} Force de frottement \overrightarrow{f}	0,75
	2.2	$\Sigma \vec{F} = \overrightarrow{mg} + \overrightarrow{N} + \vec{f}$ Composante suivant \overrightarrow{Ox} : $\Sigma \vec{F} = -mg \sin\alpha \vec{i} + 0 - f \vec{i}$ $\Sigma \vec{F} = -(f + mg\sin\alpha)\vec{i}.$ $\underline{Ou \ bien} : \Sigma \vec{F} = m\vec{g} + \vec{N} + \vec{f} = -mg \sin\alpha \vec{i} + mg \cos\alpha \vec{j} - N \vec{j} - f \vec{i}$ Mais : $mg \cos\alpha \vec{j} - N \vec{j} = 0 \ donc \ \Sigma \vec{F} = -(f + mg\sin\alpha)\vec{i}.$	0,75
	2.3	$\frac{d\vec{P}}{dt} = \Sigma \vec{F}$ $-0.9 \vec{1} = -(f + mgsin\alpha) \vec{1}$ $-0.9 = -f - 0.08 \times 10 \times 0.5$ par suite $f = 0.5 \text{ N}$	0,5

Exercice 3 (7 pts)

Induction électromagnétique

Partie	Réponse	note
1	Durant l'intervalle [0s, 4s], la valeur de B diminue (ou varie), donc le flux magnétique diminue (ou varie), il y aura alors une f.é.m induite dans le circuit. Puisque le circuit est fermé il y aura un courant induit	1
2	Durant l'intervalle [0s, 4s], B diminue avec le temps, donc le sens du champ magnétique induit est le même que celui \vec{B} pour s'opposer à sa diminution (Loi de Lenz). En utilisant la règle de la main droite, le courant induit circule dans le même sens que l'orientation positive choisie (comme les aiguilles d'une montre)	1
3	Durant l'intervalle [0s, 4s], B(t) est une ligne droite décroissante : B = at+b $a = pente = \frac{0-0.4}{4-0} = -0.1 \text{ T/s}$ $0 = -0.1 \times 4 + b$ $b = 0.4 \text{ T}$ donc $B = -0.1t + 0.4$	1
4	$\emptyset = \text{B.S.cos}(\vec{B}, \vec{n}) = (-0.1t + 0.4) \times (0.1)^{2} \times \cos(0)$ $\emptyset = -10^{-3} \text{ t} + 4 \times 10^{-3} \text{(S.I.)}$	1
5	$e = -\frac{d\phi}{dt} = 10^{-3} \mathrm{V}$	1
6	$i = \frac{e}{r} = \frac{10^{-3}}{2} = 0.5 \times 10^{-3} A$ i > 0 donc le sens du courant induit est avec l'orientation positive choisie (comme les aiguilles d'une montre)	1,5
7	le même résultat	0,5